Package: ggsmc 0.1.2.0
ggsmc: Visualising Output from Sequential Monte Carlo Samplers and Ensemble-Based Methods
Functions for plotting, and animating, the output of importance samplers, sequential Monte Carlo samplers (SMC) and ensemble-based methods. The package can be used to plot and animate histograms, densities, scatter plots and time series, and to plot the genealogy of an SMC or ensemble-based algorithm. These functions all rely on algorithm output to be supplied in tidy format. A function is provided to transform algorithm output from matrix format (one Monte Carlo point per row) to the tidy format required by the plotting and animating functions.
Authors:
ggsmc_0.1.2.0.tar.gz
ggsmc_0.1.2.0.zip(r-4.5)ggsmc_0.1.2.0.zip(r-4.4)ggsmc_0.1.2.0.zip(r-4.3)
ggsmc_0.1.2.0.tgz(r-4.4-any)ggsmc_0.1.2.0.tgz(r-4.3-any)
ggsmc_0.1.2.0.tar.gz(r-4.5-noble)ggsmc_0.1.2.0.tar.gz(r-4.4-noble)
ggsmc_0.1.2.0.tgz(r-4.4-emscripten)ggsmc_0.1.2.0.tgz(r-4.3-emscripten)
ggsmc.pdf |ggsmc.html✨
ggsmc/json (API)
# Install 'ggsmc' in R: |
install.packages('ggsmc', repos = c('https://richardgeveritt.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/richardgeveritt/ggsmc/issues
- cwna_data - Data generated from a constant velocity (or continuous white noise acceleration, CWNA) model for 20 time steps.
- lv_output - 10000 simulations from a stochastic Lotka-Volterra model, assigned weights according to a Gaussian approximate Bayesian computation kernel with tolerance equal to 50.
- mixture_25_particles - The output of an SMC sampler where the initial distribution is a Gaussian and the final target is a mixture of Gaussians. 25 particles were used, with an adaptive method to determine the sequence of targets, and a Metropolis-Hastings move to move the particles at each step.
- sir_cwna_model - The output of a bootstrap particle filter on the 'cwna_data'. The output consists of 100 particles over 20 time steps.
Last updated 2 months agofrom:0f3f579b43. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | OK | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | NOTE | Oct 29 2024 |
R-4.4-mac | NOTE | Oct 29 2024 |
R-4.3-win | NOTE | Oct 29 2024 |
R-4.3-mac | NOTE | Oct 29 2024 |
Exports:animate_densityanimate_histogramanimate_reveal_time_seriesanimate_scatteranimate_time_seriesmatrix2tidyplot_densityplot_genealogyplot_histogramplot_scatterplot_time_series
Dependencies:classclassIntclicolorspacecpp11crayonDBIe1071fansifarvergganimateggplot2gluegtablehmsisobandKernSmoothlabelinglatticelifecyclelpSolvemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpoormanprettyunitsprogressproxyR6RColorBrewerRcpprlangs2scalessfstringitibbletransformrtweenrunitsutf8vctrsviridisLitewithrwk